ou89pd2

Nebulizers: What they are and how to use them

Oxygen generators separate oxygen from air so that the gas can be fed into industrial processes in real-time or stored

in pressure tanks. Oxygen generators are used in dozens of industrial applications ranging from gold mining to aquaculture

to life support.

Normal ambient air is made up of 78% nitrogen, 21% oxygen and other trace gases like argon and CO2. In order to remove

the nitrogen and trace gases an oxygen generator is used.

The smallest portable oxygen

concentrator
can be no larger than a soda can, while industrial oxygen generators can be as large as a bus. However,

all oxygen generators have the same purpose: to provide a safe supply of concentrated oxygen gas.

Businesses who need bulk oxygen often start by purchasing tanks from other companies who fill those tanks using an

industrial oxygen generator. If the need is large and ongoing, it may be cost-effective for the business to purchase their

own oxygen generator and produce oxygen on site. While the up-front cost of the machinery is significant, the cost per

cubic foot of oxygen generated is 1/3 to 1/2 that of purchasing bulk oxygen, so over time the

oxygen concentrator can pay for itself.

One example of this is hospitals that pipe oxygen into patient rooms. Instead of bottled oxygen, most hospitals have

one or more industrial oxygen generators in the building.

Types of Oxygen Generators

Pressure Swing Adsorption Oxygen Generator

Pressure Swing Adsorption (PSA) is the most common method of producing oxygen at an industrial scale. PSA

generators separate nitrogen from ambient air inside a pressurized tank filled with Zeolite. Zeolite is a natural or

man-made mineral that acts as a “molecular sieve.” It is this ability to “sort” molecules by size that makes zeolite

so useful. The larger nitrogen molecules are adsorbed by the sieve material while the smaller oxygen molecules drift past

and are collected. Pressure is then released, the nitrogen molecules are vented to the atmosphere, and the tank is

pressurized again.

Using PSA will result in 90-95% oxygenated gas. Further refinement can be achieved by repeating the process until over

99% “pure” oxygen is generated.

As a side note, the PSA process can also be used to generate nitrogen by collecting the nitrogen molecules and venting

the oxygen. PSA is also used in the large-scale commercial synthesis of hydrogen used in oil refineries and in the

production of ammonia for fertilizer.

One special kind of oxygen generator is more commonly known as an oxygen concentrator which is used as an

alternative to oxygen bottles for home health care. While the up-front cost of the machine is more expensive than oxygen

cylinders, they are safer than bottled oxygen and over time less expensive than having oxygen tanks delivered to the home.

Oxygen concentrators are normally sold through medical supply houses and can be purchased with a prescription from a

physician.

A nebulizer is a piece of medical equipment that a person with asthma or

another respiratory condition can use to administer medication directly and quickly to the lungs.

A nebulizer turns liquid medicine into a very fine mist that a person can inhale through a face mask or mouthpiece.

Taking medicine this way allows it to go straight into the lungs and the respiratory system where it is needed.

How to use a nebulizer

Before a person starts taking medicine with a portable

nebulizer
, a doctor or nurse will explain how the nebulizer works and answer any questions.

If a person receives their nebulizer from a pharmacy or medical equipment company, someone there will explain how to

use it.

Each nebulizing machine operates a little differently. It is crucial to read the instructions for the particular

device that the doctor has prescribed.

In general, a nebulizer is very easy to use, with only a few basic steps:

Wash the hands.

Add the medicine to the medicine cup, according to the doctor’s prescription.

Assemble the top piece, tubing, mask, and mouthpiece.

Attach the tubing to the machine, according to the instructions.

Turn the nebulizer on; they can be battery- or electrically powered.

While using the nebulizer, hold the mouthpiece and medicine cup upright to help deliver all the medication.

Take slow, deep breaths through the mouthpiece and inhale all the medicine.

Please speak with the doctor or call the manufacturer with any questions or concerns about the device.

Typically, a nebulizer and the medicine it uses require a prescription from a doctor or another healthcare provider.

It is possible to purchase a nebulizer machine online without a prescription, though a doctor will probably

still need to prescribe the medication.

However, some medication manufacturers require the use of a specific type of nebulizer with

oximeter, so it is always a good idea to double-check with the pharmacist or

doctor before making a purchase.

There are several types of medication that a person can use with a nebulizer:

Bronchodilators: These are drugs that help open the airways and make breathing easier. Doctors often prescribe

bronchodilators to people with asthma, COPD, or other respiratory disorders.

Sterile saline solution: A nebulizer can deliver sterile saline to help open the airways and thin secretions.

This may loosen and make it easier to cough up mucus in the lungs.

Antibiotics: A nebulizer can deliver some types of antibiotics straight into the lungs or respiratory

tract when someone has a severe respiratory infection.

Surgical gowns are traditionally worn to protect patients from

contamination by the surgical team, and it works as isolation gowns.

Blood routinely covers gowns during surgery and often contaminates surgeons' undergarments and skin. Because of risks

to the surgical team by blood-borne pathogens, disposable and reusable gowns were examined. To quantify "strike

through," 1440 samples of gown fabric were tested against human blood in an apparatus designed to simulate abdominal

pressure during surgery. Representative pressures (0.25 to 2.0 psi) and times (1 second to 5 minutes) were studied. Above

0.5 psi, spun-bond/melt-blown/spun-bond disposable products were more resistant than spun-lace cloth. New cloth gowns were

better than those washed 40 times. Spunbond/melt-blown/spun-bond fabric exposed to blood twice was more protective than

spun-lace cloth challenged once. Gowns currently available exhibit varying resistance to strike through; only those with

an impervious plastic reinforcement offer complete protection.